Amazon SageMaker Studio für Datenwissenschaftler (ASSDS) Online
computer Online: Online Training 3. Mär 2026 bis 5. Mär 2026 |
computer Online: Online Training 16. Jun 2026 bis 18. Jun 2026 |
computer Online: Online Training 6. Okt 2026 bis 8. Okt 2026 |
Voraussetzungen
We recommend that all attendees of this course have:
- Experience using ML frameworks
- Python programming experience
- At least 1 year of experience as a data scientist responsible for training, tuning, and deploying models
- AWS Technical Essentials digital or classroom training
Zielgruppe
Experienced data scientists who are proficient in ML and deep learning fundamentals.
Detaillierter Kursinhalt
Day 1
Module 1: Amazon SageMaker Studio Setup
- JupyterLab Extensions in SageMaker Studio
- Demonstration: SageMaker user interface demo
Module 2: Data Processing
- Using SageMaker Data Wrangler for data processing
- Hands-On Lab: Analyze and prepare data using Amazon SageMaker Data Wra…
Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!
Voraussetzungen
We recommend that all attendees of this course have:
- Experience using ML frameworks
- Python programming experience
- At least 1 year of experience as a data scientist responsible for training, tuning, and deploying models
- AWS Technical Essentials digital or classroom training
Zielgruppe
Experienced data scientists who are proficient in ML and deep learning fundamentals.
Detaillierter Kursinhalt
Day 1
Module 1: Amazon SageMaker Studio Setup
- JupyterLab Extensions in SageMaker Studio
- Demonstration: SageMaker user interface demo
Module 2: Data Processing
- Using SageMaker Data Wrangler for data processing
- Hands-On Lab: Analyze and prepare data using Amazon SageMaker Data Wrangler
- Using Amazon EMR
- Hands-On Lab: Analyze and prepare data at scale using Amazon EMR
- Using AWS Glue interactive sessions
- Using SageMaker Processing with custom scripts
- Hands-On Lab: Data processing using Amazon SageMaker Processing and SageMaker Python SDK
- SageMaker Feature Store
- Hands-On Lab: Feature engineering using SageMaker Feature Store
Module 3: Model Development
- SageMaker training jobs
- Built-in algorithms
- Bring your own script
- Bring your own container
- SageMaker Experiments
- Hands-On Lab: Using SageMaker Experiments to Track Iterations of Training and Tuning Models
Day 2
Module 3: Model Development (continued)
- SageMaker Debugger
- Hands-On Lab: Analyzing, Detecting, and Setting Alerts Using SageMaker Debugger
- Automatic model tuning
- SageMaker Autopilot: Automated ML
- Demonstration: SageMaker Autopilot
- Bias detection
- Hands-On Lab: Using SageMaker Clarify for Bias and Explainability
- SageMaker Jumpstart
Module 4: Deployment and Inference
- SageMaker Model Registry
- SageMaker Pipelines
- Hands-On Lab: Using SageMaker Pipelines and SageMaker Model Registry with SageMaker Studio
- SageMaker model inference options
- Scaling
- Testing strategies, performance, and optimization
- Hands-On Lab: Inferencing with SageMaker Studio
Module 5: Monitoring
- Amazon SageMaker Model Monitor
- Discussion: Case study
- Demonstration: Model Monitoring
Day 3
Module 6: Managing SageMaker Studio Resources and Updates
- Accrued cost and shutting down
- Updates
Capstone
- Environment setup
- Challenge 1: Analyze and prepare the dataset with SageMaker Data Wrangler
- Challenge 2: Create feature groups in SageMaker Feature Store
- Challenge 3: Perform and manage model training and tuning using SageMaker Experiments
- (Optional) Challenge 4: Use SageMaker Debugger for training performance and model optimization
- Challenge 5: Evaluate the model for bias using SageMaker Clarify
- Challenge 6: Perform batch predictions using model endpoint
- (Optional) Challenge 7: Automate full model development process using SageMaker Pipeline
Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!

