AI+ Cloud (AICL) Online
computer Online: Online Training 23. Feb 2026 bis 27. Feb 2026 |
computer Online: Online Training 14. Sep 2026 bis 18. Sep 2026 |
Voraussetzungen
- A foundational understanding of key concepts in both artificial intelligence and cloud computing
- Fundamental understanding of computer science concepts like programming, data structures, and algorithms
- Familiarity with cloud computing platforms like AWS, Azure, or GCP
- Basic knowledge of mathematics as it important for machine learning, which is a core component of AI+ Cloud program
Detaillierter Kursinhalt
Module 1: Fundamentals of Artificial Intelligence (AI) in Cloud
- 1.1 Introduction to AI and Its Application
- 1.2 Overview of Cloud Computing and Its Benefits
- 1.3 Benefits and Challenges of AI-Cloud Integration
Module 2: Introduction to Artificial Intelligence
- 2.1 Basi…
Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!
Voraussetzungen
- A foundational understanding of key concepts in both artificial intelligence and cloud computing
- Fundamental understanding of computer science concepts like programming, data structures, and algorithms
- Familiarity with cloud computing platforms like AWS, Azure, or GCP
- Basic knowledge of mathematics as it important for machine learning, which is a core component of AI+ Cloud program
Detaillierter Kursinhalt
Module 1: Fundamentals of Artificial Intelligence (AI) in Cloud
- 1.1 Introduction to AI and Its Application
- 1.2 Overview of Cloud Computing and Its Benefits
- 1.3 Benefits and Challenges of AI-Cloud Integration
Module 2: Introduction to Artificial Intelligence
- 2.1 Basic Concepts and Principles of AI
- 2.2 Machine Learning and Its Applications
- 2.3 Overview of Common AI Algorithms
- 2.4 Introduction to Python Programming for AI
Module 3: Fundamentals of Cloud Computing
- 3.1 Cloud Service Models
- 3.2 Cloud Deployment Models
- 3.3 Key Cloud Providers and Offerings (AWS, Azure, Google Cloud)
Module 4: AI Services in the Cloud
- 4.1 Integration of AI Services in Cloud Platform
- 4.2 Working with Pre-built Machine Learning Models
- 4.3 Introduction to Cloud-based AI tools
Module 5: AI Model Development in the Cloud
- 5.1 Building and Training Machine Learning Models
- 5.2 Model Optimization and Evaluation
- 5.3 Collaborative AI Development in a Cloud Environment
Module 6: Cloud Infrastructure for AI
- 6.1 Setting Up and Configuring Cloud Resources
- 6.2 Scalability and Performance Considerations
- 6.3 Data Storage and Management in the Cloud
Module 7: Deployment and Integration
- 7.1 Strategies for Deploying AI Models in the Cloud
- 7.2 Integration of AI Solutions with Existing Cloud-Based Applications
- 7.3 API Usage and Considerations
Module 8: Future Trends in AI+ Cloud Integration
- 8.1 Introduction to Future Trends
- 8.2 AI Trends Impacting Cloud Integration
Module 9: Capstone Project
- 9.1 Exercise 1: Diabetes Prediction Using Machine Learning
- 9.2 Exercise 2: Building & Deploying an Image Classification Web App with GCP AutoML Vision Edge, Tensorflow.js & GCP App Engine
- 9.3 Exercise 3: How to deploy your own ML model to GCP in 5 simple steps.
- 9.4 Exercise 4: Google Cloud Platform Custom Model Upload , REST API Inference and Model Version Monitoring
- 9.5 Exercise 5: Deploy Machine Learning Model in Google Cloud Platform Using Flask
Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!

