The Machine Learning Pipeline on AWS

Dauer
Ausführung
Vor Ort
Startdatum und Ort

The Machine Learning Pipeline on AWS

Cegos Integrata GmbH
Logo von Cegos Integrata GmbH
Bewertung: starstarstarstarstar_half 8,6 Bildungsangebote von Cegos Integrata GmbH haben eine durchschnittliche Bewertung von 8,6 (aus 35 Bewertungen)

Suchen Sie weitere Details oder möchten Sie den Kurs gleich buchen? Besuchen Sie direkt die Anbieterseite.

Startdaten und Startorte

placeHannover
20. Nov 2023
Details ansehen
event 20. November 2023, 09:00-17:00, Hannover, Seminar 59008
placeim Büro, Homeoffice, Meetingraum
20. Nov 2023
Details ansehen
event 20. November 2023, 09:00-17:00, im Büro, Homeoffice, Meetingraum, Seminar 59008

Beschreibung

Learn how to use the machine learning (ML) pipeline with Amazon SageMaker with hands-on exercises and four days of instruction. You will learn how to frame your business problems as ML problems and use Amazon SageMaker to train, evaluate, tune, and deploy ML models. Hands-on learning is a key component of this course, so you’ll choose a project to work on, and then apply the knowledge and skills you learn to your chosen project in each phase of the pipeline. You’ll have a choice of projects: fraud detection, recommendation engines, or flight delays.

Day one

Module 0: Introduction

  • Pre-assessment

Module 1: Introduction to Machine Learning and the ML Pipeline

  • Overview of machine learning, …

Gesamte Beschreibung lesen

Frequently asked questions

Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!

Learn how to use the machine learning (ML) pipeline with Amazon SageMaker with hands-on exercises and four days of instruction. You will learn how to frame your business problems as ML problems and use Amazon SageMaker to train, evaluate, tune, and deploy ML models. Hands-on learning is a key component of this course, so you’ll choose a project to work on, and then apply the knowledge and skills you learn to your chosen project in each phase of the pipeline. You’ll have a choice of projects: fraud detection, recommendation engines, or flight delays.

Day one

Module 0: Introduction

  • Pre-assessment

Module 1: Introduction to Machine Learning and the ML Pipeline

  • Overview of machine learning, including use cases, types of machine learning, and key concepts
  • Overview of the ML pipeline
  • Introduction to course projects and approach

Module 2: Introduction to Amazon SageMaker

  • Introduction to Amazon SageMaker
  • Demo: Amazon SageMaker and Jupyter notebooks
  • Hands-on: Amazon SageMaker and Jupyter notebooks

Module 3: Problem Formulation

  • Overview of problem formulation and deciding if ML is the right solution
  • Converting a business problem into an ML problem
  • Demo: Amazon SageMaker Ground Truth
  • Hands-on: Amazon SageMaker Ground Truth


Day Two

Module 3: Problem Formulation (continued)

  • Practice problem formulation
  • Formulate problems for projects

Checkpoint 1 and Answer Review

Module 4: Preprocessing

  • Overview of data collection and integration, and techniques for data preprocessing and visualization
  • Practice preprocessing
  • Preprocess project data and discuss project progress


Day Three

Checkpoint 2 and Answer Review

Module 5: Model Training

  • Choosing the right algorithm
  • Formatting and splitting your data for training
  • Loss functions and gradient descent for improving your model
  • Demo: Create a training job in Amazon SageMaker

Module 6: Model Evaluation

  • How to evaluate classification models
  • How to evaluate regression models
  • Practice model training and evaluation
  • Train and evaluate project models, then present findings


Day Four

Checkpoint 3 and Answer Review

Module 7: Feature Engineering and Model Tuning

  • Feature extraction, selection, creation, and transformation
  • Hyperparameter tuning
  • Demo: SageMaker hyperparameter optimization
  • Practice feature engineering and model tuning
  • Apply feature engineering and model tuning to projects
  • Final project presentations

Module 8: Deployment

  • How to deploy, inference, and monitor your model on Amazon SageMaker
  • Deploying ML at the edge
  • Demo: Creating an Amazon SageMaker endpoint
  • Post-assessment
  • Course wrap-up

 

WICHTIG: Bitte bringen Sie zu unseren Trainings Ihr Notebook (Windows, Linux oder Mac) mit. Wenn dies nicht möglich ist, nehmen Sie bitte mit uns vorher Kontakt auf.

Kursunterlagen sind in englischer Sprache, Kurssprache des Trainers ist deutsch.

Es wurden noch keine Bewertungen geschrieben.

Schreiben Sie eine Bewertung

Haben Sie Erfahrung mit diesem Kurs? Schreiben Sie jetzt eine Bewertung und helfen Sie Anderen dabei die richtige Weiterbildung zu wählen. Als Dankeschön spenden wir € 1,00 an Stiftung Edukans.

Es wurden noch keine FAQ hinterlegt. Falls Sie Fragen haben oder Unterstützung benötigen, kontaktieren Sie unseren Kundenservice. Wir helfen gerne weiter!